what will happen to humanity if theres such a sudden decrease in the ozone layer?What are the causes and effects of a decrease in the ozone layer?
For over 50 years, chlorofluorocarbons (CFCs) were thought of as miracle substances. They are stable, nonflammable, low in toxicity, and inexpensive to produce. Over time, CFCs found uses as refrigerants, solvents, foam blowing agents, and in other smaller applications. Other chlorine-containing compounds include methyl chloroform, a solvent, and carbon tetrachloride, an industrial chemical. Halons, extremely effective fire extinguishing agents, and methyl bromide, an effective produce and soil fumigant, contain bromine. All of these compounds have atmospheric lifetimes long enough to allow them to be transported by winds into the stratosphere. Because they release chlorine or bromine when they break down, they damage the protective ozone layer. The discussion of the ozone depletion process below focuses on CFCs, but the basic concepts apply to all of the ozone-depleting substances (ODS).
In the early 1970s, researchers began to investigate the effects of various chemicals on the ozone layer, particularly CFCs, which contain chlorine. They also examined the potential impacts of other chlorine sources. Chlorine from swimming pools, industrial plants, sea salt, and volcanoes does not reach the stratosphere. Chlorine compounds from these sources readily combine with water and repeated measurements show that they rain out of the troposphere very quickly. In contrast, CFCs are very stable and do not dissolve in rain. Thus, there are no natural processes that remove the CFCs from the lower atmosphere. Over time, winds drive the CFCs into the stratosphere.
The CFCs are so stable that only exposure to strong UV radiation breaks them down. When that happens, the CFC molecule releases atomic chlorine. One chlorine atom can destroy over 100,000 ozone molecules. The net effect is to destroy ozone faster than it is naturally created. To return to the analogy comparing ozone levels to a stream's depth, CFCs act as a siphon, removing water faster than normal and reducing the depth of the stream.
Large fires and certain types of marine life produce one stable form of chlorine that does reach the stratosphere. However, numerous experiments have shown that CFCs and other widely-used chemicals produce roughly 84% of the chlorine in the stratosphere, while natural sources contribute only 16%.
Large volcanic eruptions can have an indirect effect on ozone levels. Although Mt. Pinatubo's 1991 eruption did not increase stratospheric chlorine concentrations, it did produce large amounts of tiny particles called aerosols (different from consumer products also known as aerosols). These aerosols increase chlorine's effectiveness at destroying ozone. The aerosols only increased depletion because of the presence of CFC - based chlorine. In effect, the aerosols increased the efficiency of the CFC siphon, lowering ozone levels even more than would have otherwise occurred. Unlike long-term ozone depletion, however, this effect is short-lived. The aerosols from Mt. Pinatubo have already disappeared, but satellite, ground-based, and balloon data still show ozone depletion occurring closer to the historic trend.
One example of ozone depletion is the annual ozone ';hole'; over Antarctica that has occurred during the Antarctic Spring since the early 1980s. Rather than being a literal hole through the layer, the ozone hole is a large area of the stratosphere with extremely low amounts of ozone. Ozone levels fall by over 60% during the worst years.
In addition, research has shown that ozone depletion occurs over the latitudes that include North America, Europe, Asia, and much of Africa, Australia, and South America. Over the U.S., ozone levels have fallen 5-10%, depending on the season. Thus, ozone depletion is a global issue and not just a problem at the South Pole.
Reductions in ozone levels will lead to higher levels of UVB reaching the Earth's surface. The sun's output of UVB does not change; rather, less ozone means less protection, and hence more UVB reaches the Earth. Studies have shown that in the Antarctic, the amount of UVB measured at the surface can double during the annual ozone hole. Another study confirmed the relationship between reduced ozone and increased UVB levels in Canada during the past several years.
Laboratory and epidemiological studies demonstrate that UVB causes nonmelanoma skin cancer and plays a major role in malignant melanoma development. In addition, UVB has been linked to cataracts. All sunlight contains some UVB, even with normal ozone levels. It is always important to limit exposure to the sun. However, ozone depletion will increase the amount of UVB, which will then increase the risk of health effects. Furthermore, UVB harms some crops, plastics and other materials, and certain types of marineWhat are the causes and effects of a decrease in the ozone layer?
Haha, ozone layer? We always smell ozone after a lightning strike, or after some electrical explosion. We got our ozone layer after some pretty powerful lightning blasts rocked our planet a while back.
main cause is green house gases which are noramlly extracts from Air conditioners.
Effect is raise in temperature. By this ice will melt from poles 9antarktika and arctika). increase in sea level etc etc
liek i said previously the ozone layer id decreasing which will cause the whole earth to burn so goodbye for us...lol seriously its the truth
burning plastics,wheel and other things that has chemicals
it will alow the u-v rays which is harmful to health of the people and which results in skin irritation,eye problems and other problems.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment